Big Data - это подход обработки большего числа данных для получения новой информации, которые тяжело обработать обычными способами.Данные могут быть как структурированные, так и неструктурированные.
Технология Big Data позволяет: успешно хранить и управлять информацией с большим объемом; структурировать сведения, приходящие из различных источников (видео, изображений, аудио и текстовых документов), в один единый, понятный вид; формировать аналитику и создавать точные прогнозы на основании структурированной и обработанной информации.
Volume – объем, накопленная база данных представляет собой большой объем информации, который трудоемко обрабатывать и хранить традиционными способами, для них требуются новый подход и усовершенствованные инструменты.
Velocity – скорость, данный признак указывает как на увеличивающуюся скорость накопления данных (90% информации было собрано за последние 2 года), так и на скорость обработки данных, в последнее время стали более востребованы технологии обработки данных в реальном времени.
Variety – многообразие, т.е. возможность одновременной обработки структурированной и неструктурированной разноформатной информации. Главное отличие структурированной информации – это то, что она может быть классифицирована. Примером такой информации может служить информация о клиентских транзакциях.
Неструктурированная информация включает в себя видео, аудио файлы, свободный текст, информацию, поступающую из социальных сетей. На сегодняшний день 80% информации входит в группу неструктурированной. Данная информация нуждается в комплексном анализе, чтобы сделать ее полезной для дальнейшей обработки.Veracity – достоверность данных, все большее значение пользователи стали придавать значимость достоверности имеющихся данных. Так, у интернет-компаний есть проблема по разделению действий, проводимых роботом и человеком на сайте компании, что приводит в конечном счете к затруднению анализа данных.
Value – ценность накопленной информации. Большие Данные должны быть полезны компании и приносить определенную ценность для нее. К примеру, помогать в усовершенствовании бизнес-процессов, составлении отчетности или оптимизации расходов.
Краудсорсинг
Данная методика позволяет получать данные одновременно из нескольких источников, причем количество последних практически не ограничено.
А/В-тестирование
Из всего объема данных выбирается контрольная совокупность элементов, которую поочередно сравнивают с другими подобными совокупностями, где был изменен один из элементов. Проведение подобных тестов помогает определить, колебания какого из параметров оказывают наибольшее влияние на контрольную совокупность. Благодаря объемам Big Data можно проводить огромное число итераций, с каждой из них приближаясь к максимально достоверному результату.
Прогнозная аналитика
Специалисты в данной области стараются заранее предугадать и распланировать то, как будет вести себя подконтрольный объект, чтобы принять наиболее выгодное в этой ситуации решение.
Машинное обучение (искусственный интеллект)
Основывается на эмпирическом анализе информации и последующем построении алгоритмов самообучения систем.
Сетевой анализ
Наиболее распространенный метод для исследования социальных сетей – после получения статистических данных анализируются созданные в сетке узлы, то есть взаимодействия между отдельными пользователями и их сообществами.
Перспективы и тенденции развития Big Data
Облачные хранилища
Хранение и обработка данных становятся более быстрыми и экономичными – по сравнению с расходами на содержание собственного дата-центра и возможное расширение персонала аренда облака представляется гораздо более дешевой альтернативой.
Использование Dark Data.
Так называемые «темные данные» – вся неоцифрованная информация о компании, которая не играет ключевой роли при непосредственном ее использовании, но может послужить причиной для перехода на новый формат хранения сведений.
Искусственный интеллект и Deep Learning.
Технология обучения машинного интеллекта, подражающая структуре и работе человеческого мозга, как нельзя лучше подходит для обработки большого объема постоянно меняющейся информации. В этом случае машина сделает все то же самое, что должен был бы сделать человек, но при этом вероятность ошибки значительно снижается.
Blockchain.
Эта технология позволяет ускорить и упростить многочисленные интернет-транзакции, в том числе международные. Еще один плюс Блокчейна в том, что благодаря ему снижаются затраты на проведение транзакций.
Самообслуживание и снижение цен.
В 2017 году планируется внедрить «платформы самообслуживания» – это бесплатные площадки, где представители малого и среднего бизнеса смогут самостоятельно оценить хранящиеся у них данные и систематизировать их.
Банки
ТОП-5 российских банков, которые активно инвестируют в big data:
Недвижимость